83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225 | def merge_duplicate_nodes(x, round=False, inplace=False):
"""Merge nodes the occupy the exact same position in space.
Note that this might produce connections where there previously weren't
any!
Parameters
----------
x : TreeNeuron | NeuronList
Neuron(s) to fix.
round : int, optional
If provided will round node locations to given decimals. This
can be useful if the positions are floats and not `exactly` the
the same.
inplace : bool
If True, perform operation on neuron inplace.
Returns
-------
TreeNeuron
Fixed neuron. Only if `inplace=False`.
Examples
--------
>>> import navis
>>> n = navis.example_neurons(1)
>>> n.nodes.loc[1, ['x', 'y' ,'z']] = n.nodes.loc[0, ['x', 'y' ,'z']]
>>> fx = navis.graph.clinic.merge_duplicate_nodes(n)
>>> n.n_nodes, fx.n_nodes
(4465, 4464)
"""
if isinstance(x, core.NeuronList):
if not inplace:
x = x.copy()
for n in x:
_ = merge_duplicate_nodes(n, round=round, inplace=True)
if not inplace:
return x
return
if not isinstance(x, core.TreeNeuron):
raise TypeError(f'Expected TreeNeuron, got "{type(x)}"')
if not inplace:
x = x.copy()
# Figure out which nodes are duplicated
if round:
dupl = x.nodes[['x', 'y', 'z']].round(round).duplicated(keep=False)
else:
dupl = x.nodes[['x', 'y', 'z']].duplicated(keep=False)
if dupl.sum():
# Operate on the edge list
edges = x.nodes[['node_id', 'parent_id']].values.copy()
# Go over each non-unique location
ids = x.nodes.loc[dupl].groupby(['x', 'y', 'z']).node_id.apply(list)
for i in ids:
# Keep the first node and collapse all others into it
edges[np.isin(edges[:, 0], i[1:]), 0] = i[0]
edges[np.isin(edges[:, 1], i[1:]), 1] = i[0]
# Drop self-loops
edges = edges[edges[:, 0] != edges[:, 1]]
# Make sure we don't have a->b and b<-a edges
edges = np.unique(np.sort(edges, axis=1), axis=0)
G = nx.Graph()
# Get nodes but drop ""-1"
nodes = edges.flatten()
nodes = nodes[nodes >= 0]
# Add nodes
G.add_nodes_from(nodes)
# Drop edges that point away from root (e.g. (1, -1))
# Don't do this before because we would loose isolated nodes otherwise
edges = edges[edges.min(axis=1) >= 0]
# Add edges
G.add_edges_from([(e[0], e[1]) for e in edges])
# First remove cycles
while True:
try:
# Find cycle
cycle = nx.find_cycle(G)
except nx.exception.NetworkXNoCycle:
break
except BaseException:
raise
# Sort by degree
cycle = sorted(cycle, key=lambda x: G.degree[x[0]])
# Remove the edge with the lowest degree
G.remove_edge(cycle[0][0], cycle[0][1])
# Now make sure this is a DAG, i.e. that all edges point in the same direction
new_edges = []
for c in nx.connected_components(G.to_undirected()):
sg = nx.subgraph(G, c)
# Try picking a node that was root in the original neuron
is_present = np.isin(x.root, sg.nodes)
if any(is_present):
r = x.root[is_present][0]
else:
r = list(sg.nodes)[0]
# Generate parent->child dictionary by graph traversal
this_lop = nx.predecessor(sg, r)
# Note that we assign -1 as root's parent
new_edges += [(k, v[0]) for k, v in this_lop.items() if v]
# We need a directed Graph for this as otherwise the child -> parent
# order in the edges might get lost
G2 = nx.DiGraph()
G2.add_nodes_from(G.nodes)
G2.add_edges_from(new_edges)
# Generate list of parents
new_edges = np.array(G2.edges)
new_parents = dict(zip(new_edges[:, 0], new_edges[:, 1]))
# Drop nodes that aren't present anymore
x._nodes = x._nodes.loc[x._nodes.node_id.isin(new_edges.flatten())].copy()
# Rewire kept nodes
x.nodes['parent_id'] = x.nodes.node_id.map(lambda x: new_parents.get(x, -1))
# Reset temporary attributes
x._clear_temp_attr()
if not inplace:
return x
|