Skip to content

API Overview#

NAVis has grown a lot! Last I looked, there were over 120 functions and classes exposed at top level (e.g. navis.plot3d) and easily another 100 available via submodules (e.g. navis.transforms.AffineTransform). This can be a bit daunting at first - especially if you don't exactly know what you are looking for!

This document provides a curated, high-level summary. I recommend you either just have a browse, use the search field (upper right) or simply search in page (CONTROL/CMD-F). Failing that, please feel free to open a thread on Github Discussions with your question.

This API reference is a more or less complete account of the primary functions:

  1. Neuron- and NeuronList functions and methods
  2. Functions for visualization
  3. Manipulate or analyze neuron morphology
  4. Transforming and mirroring data
  5. Analyze connectivity
  6. Import/Export
  7. Utility functions
  8. Which functions work with which neuron types?

In addition NAVis has interfaces to various external datasets and tools:

Most of these functions include examples of how to use them. Click on them to learn more!

Neurons & NeuronLists#

TreeNeurons, MeshNeurons, VoxelNeurons and Dotprops are neuron classes. NeuronLists are containers thereof.

Class Description
navis.TreeNeuron Skeleton representation of a neuron.
navis.MeshNeuron Meshes with vertices and faces.
navis.VoxelNeuron 3D images (e.g. from confocal stacks).
navis.Dotprops Point cloud + vector representations, used for NBLAST.
navis.NeuronList Containers for neurons.

General Neuron methods#

Despite being fundamentally different data types, all neurons share some common methods (i.e. functions) which they inherit from their abstract parent class BaseNeurons.

Method Description
Neuron.copy() Return a copy of the neuron.
Neuron.plot3d() Plot neuron using navis.plot3d.
Neuron.plot2d() Plot neuron using navis.plot2d.
Neuron.summary() Get a summary of this neuron.
Neuron.convert_units() Convert coordinates to different unit.
Neuron.map_units() Convert units to match neuron space.
Neuron.memory_usage() Return estimated memory usage of this neuron.

In addition to methods, neurons also have properties. These properties common to all neurons:

General Neuron properties#

Property Description
Neuron.connectors Connector table. If none, will return None.
Neuron.postsynapses Table with postsynapses (filtered from connectors table).
Neuron.presynapses Table with presynapses (filtered from connectors table).
Neuron.datatables Names of all DataFrames attached to this neuron.
Neuron.id ID of the neuron.
Neuron.name Neuron name.
Neuron.units Units for coordinate space.
Neuron.type Neuron type.
Neuron.soma The soma of the neuron (if any).
Neuron.bbox Bounding box of neuron.

Note

Neurons can have the above properties but that is not guaranteed. For example, a neuron might not have any associated synapses in which case Neuron.connectors will be None.

Skeletons#

A navis.TreeNeuron represents a skeleton. These are class methods available specific for this neuron type. Note that most of them are simply short-hands for the other NAVis functions:

Method Description
TreeNeuron.convert_units() Convert coordinates to different unit.
TreeNeuron.cell_body_fiber() Prune neuron to its cell body fiber.
TreeNeuron.downsample() Downsample the neuron by given factor.
TreeNeuron.get_graph_nx() Calculate and return networkX representation of neuron.
TreeNeuron.get_igraph() Calculate and return iGraph representation of neuron.
TreeNeuron.prune_by_longest_neurite() Prune neuron down to the longest neurite.
TreeNeuron.prune_by_strahler() Prune neuron based on Strahler order.
TreeNeuron.prune_by_volume() Prune neuron by intersection with given volume(s).
TreeNeuron.prune_distal_to() Cut off nodes distal to given nodes.
TreeNeuron.prune_proximal_to() Remove nodes proximal to given node. Reroots neuron to cut node.
TreeNeuron.prune_twigs() Prune terminal twigs under a given size.
TreeNeuron.reload() Reload neuron. Must have filepath as .origin as attribute.
TreeNeuron.reroot() Reroot neuron to given node ID or node tag.
TreeNeuron.resample() Resample neuron to given resolution.
TreeNeuron.snap() Snap xyz location(s) to closest node or synapse.

In addition, a navis.TreeNeuron has a range of different properties:

Method Description
TreeNeuron.adjacency_matrix Adjacency matrix of the skeleton.
TreeNeuron.cable_length Cable length.
TreeNeuron.cycles Cycles in neuron (if any).
TreeNeuron.downsample Downsample the neuron by given factor.
TreeNeuron.edges Edges between nodes.
TreeNeuron.edge_coords Coordinates of edges between nodes.
TreeNeuron.igraph iGraph representation of this neuron.
TreeNeuron.is_tree Whether neuron is a tree.
TreeNeuron.n_branches Number of branch points.
TreeNeuron.n_leafs Number of leaf nodes.
TreeNeuron.n_skeletons Number of seperate skeletons in this neuron.
TreeNeuron.n_trees Count number of connected trees in this neuron.
TreeNeuron.nodes Node table.
TreeNeuron.root Root node(s).
TreeNeuron.sampling_resolution Average cable length between child -> parent nodes.
TreeNeuron.segments Neuron broken down into linear segments (see also .small_segments).
TreeNeuron.simple Simplified representation consisting only of root, branch points and leafs.
TreeNeuron.soma_pos Search for soma and return its position.
TreeNeuron.subtrees List of subtrees. Sorted by size as sets of node IDs.
TreeNeuron.vertices Vertices of the skeleton.
TreeNeuron.volume Radius-based volume.

Skeleton utility functions#

Function Description
navis.rewire_skeleton() Rewire neuron from graph.
navis.insert_nodes() Insert new nodes between existing nodes.
navis.remove_nodes() Drop nodes from neuron without disconnecting it.
navis.graph.simplify_graph() Simplify skeleton graph (networkX or igraph).
navis.graph.skeleton_adjacency_matrix() Generate adjacency matrix for a skeleton.

Mesh neurons#

Properties specific to navis.MeshNeuron:

Property Description
MeshNeuron.faces Faces making up the neuron.
MeshNeuron.vertices Vertices making up the neuron.
MeshNeuron.trimesh Trimesh representation of the neuron.
MeshNeuron.volume Volume of the neuron.
MeshNeuron.sampling_resolution Average distance between vertices.

Methods specific to navis.MeshNeuron:

Method Description
MeshNeuron.skeletonize() Skeletonize mesh.
MeshNeuron.snap() Snap xyz location(s) to closest vertex or synapse.
MeshNeuron.validate() Use trimesh to try and fix some common mesh issues.

Voxel neurons#

VoxelNeurons (e.g. from confocal image stacks) are a relatively recet addition to NAVis and the interface might still change.

These are methods and properties specific to VoxelNeurons:

Property Description
VoxelNeuron.density Fraction of filled voxels.
VoxelNeuron.grid Voxel grid representation.
VoxelNeuron.max Maximum value (excludes zeros).
VoxelNeuron.min Minimum value (excludes zeros).
VoxelNeuron.nnz Number of non-zero voxels.
VoxelNeuron.offset Offset (in voxels).
VoxelNeuron.shape Shape of voxel grid.
VoxelNeuron.strip() Strip empty voxels (leading/trailing planes of zeros).
VoxelNeuron.threshold() Drop below-threshold voxels.
VoxelNeuron.voxels Voxels making up the neuron.

Dotprops#

navis.Dotprops are typically indirectly generated from e.g. skeletons or point clouds using navis.make_dotprops().

These are methods and properties specific to Dotprops:

Function Description
Dotprops.points Center of tangent vectors.
Dotprops.vect Tangent vectors.
Dotprops.alpha Alpha value for tangent vectors (optional).
Dotprops.to_skeleton() Turn Dotprop into a TreeNeuron.
Dotprops.snap() Snap xyz location(s) to closest point or synapse.

Converting between types#

These functions will let you convert between neuron types:

Function Description
navis.make_dotprops() Produce dotprops from neurons or point clouds.
navis.skeletonize() Turn neuron into skeleton.
navis.mesh() Generate mesh from object(s).
navis.voxelize() Turn neuron into voxels.
navis.conversion.voxels2mesh() Generate mesh from voxels using marching cubes.
navis.conversion.tree2meshneuron() Convert TreeNeuron to MeshNeuron.

See also Utility for functions to convert to/from basic data types.

NeuronList methods#

NeuronLists let you access all the properties and methods of the neurons they contain. In addition there are a few NeuronList-specific methods and properties.

Methods:

Method Description
NeuronList.apply() Apply function across all neurons in this NeuronList.
NeuronList.head() Return summary for top N neurons.
NeuronList.itertuples() Helper to mimic pandas.DataFrame.itertuples().
NeuronList.mean() Return mean numeric and boolean values over all neurons.
NeuronList.remove_duplicates() Remove duplicate neurons from list.
NeuronList.sum() Return sum numeric and boolean values over all neurons.
NeuronList.summary() Get summary over all neurons in this NeuronList.
NeuronList.tail() Return summary for bottom N neurons.
NeuronList.unmix() Split into NeuronLists of the same neuron type.

Properties:

Property Description
NeuronList.bbox Bounding box across all neurons in the list.
NeuronList.empty Return True if NeuronList is empty.
[NeuronList.id][navis.NeuronList.id] An array with the IDs of the neurons contained in the list.
[NeuronList.idx][navis.NeuronList.idx] An indexer similar to pandas' iloc that accepts neuron IDs.
NeuronList.is_degenerated Return True if contains neurons with non-unique IDs.
NeuronList.is_mixed Return True if contains more than one type of neuron.
NeuronList.shape Shape of NeuronList (N, ).
NeuronList.types Return neuron types present in this list.

Please see the tutorial on NeuronList for more information, including how to index them.

Visualization#

Various functions for plotting neurons and volumes.

Function Description
navis.plot3d() Generate interactive 3D plot.
navis.plot2d() Generate 2D plots of neurons and neuropils.
navis.plot1d() Plot neuron topology in 1D according to Cuntz et al. (2010).
navis.plot_flat() Plot neuron as flat diagrams.
navis.clear3d() Clear viewer 3D canvas.
navis.close3d() Close existing 3D viewer (wipes memory).
navis.pop3d() Remove the last item added to the 3D canvas.
navis.get_viewer() Grab active 3D viewer.

Plotting Volumes/Meshes#

To plot meshes, you can pass trimesh.Trimesh objects directly to plot3d() or plot2d(). However, NAVis has a custom class to represent meshes that has some useful perks: navis.Volume.

Class Description
navis.Volume Mesh consisting of vertices and faces.
navis.Volume.combine Merge multiple volumes into a single object.
navis.Volume.plot3d Plot volume using navis.plot3d.
navis.Volume.validate Use trimesh to try and fix issues (holes/normals).
navis.Volume.resize Resize volume.

Vispy 3D viewer#

Using navis.plot3d() with backend="vispy" from a terminal will spawn a Vispy 3D viewer object which has a bunch of useful methods. Note that this requires one of navis' vispy-* extras to be installed, so that vispy has a backend.

Function Description
navis.Viewer Vispy 3D viewer.
navis.Viewer.add() Add objects to canvas.
navis.Viewer.clear() Clear canvas.
navis.Viewer.close() Close viewer.
`navis.Viewer.colorize() Colorize neurons using a seaborn color palette.
navis.Viewer.set_colors() Set neuron color.
navis.Viewer.hide_neurons() Hide given neuron(s).
navis.Viewer.unhide_neurons() Unhide given neuron(s).
navis.Viewer.screenshot() Save a screenshot of this viewer.
navis.Viewer.show() Show viewer.
navis.Viewer.toggle_bounds() Toggle bounding box.

Octarine 3D viewer#

Using navis.plot3d() with backend="octarine" from a terminal will return an octarine.Viewer 3D viewer. Please see the Octarine documentation for details about the viewer.

Neuron Morphology#

Collection of functions to analyze and manipulate neuronal morphology.

Analyse#

Functions to analyze morphology.

Function Description
navis.find_main_branchpoint() Find main branch point of unipolar (e.g. insect) neurons.
navis.form_factor() Calculate form factor for given neuron.
navis.persistence_points() Calculate points for a persistence diagram.
navis.persistence_vectors() Produce vectors from persistence points.
navis.strahler_index() Calculate Strahler Index (SI).
navis.segment_analysis() Calculate morphometric properties a neuron's segments.
navis.ivscc_features() Calculate IVSCC features for neuron(s).
navis.sholl_analysis() Run Sholl analysis for given neuron(s).
navis.tortuosity() Calculate tortuosity of a neuron.
navis.betweeness_centrality() Calculate vertex/node betweenness.

Manipulate#

Functions to edit morphology:

Function Description
navis.average_skeletons() Compute an average from a list of skeletons.
navis.break_fragments() Break neuron into its connected components.
navis.despike_skeleton() Remove spikes in skeleton (e.g. from jumps in image data).
navis.drop_fluff() Remove small disconnected pieces of "fluff".
navis.cell_body_fiber() Prune neuron to its cell body fiber.
navis.combine_neurons() Combine multiple neurons into one.
navis.cut_skeleton() Split skeleton at given point and returns two new neurons.
navis.guess_radius() Guess radii for skeleton nodes.
navis.heal_skeleton() Heal fragmented skeleton(s).
navis.longest_neurite() Return a neuron consisting of only the longest neurite(s).
navis.prune_by_strahler() Prune neuron based on Strahler order.
navis.prune_twigs() Prune terminal twigs under a given size.
navis.prune_at_depth() Prune all neurites past a given distance from a source.
navis.reroot_skeleton() Reroot neuron to new root.
navis.split_axon_dendrite() Split a neuron into axon and dendrite.
navis.split_into_fragments() Split neuron into fragments.
navis.stitch_skeletons() Stitch multiple skeletons together.
navis.subset_neuron() Subset a neuron to a given set of nodes/vertices.
navis.smooth_skeleton() Smooth skeleton(s) using rolling windows.
navis.smooth_mesh() Smooth meshes (TriMesh, MeshNeuron, Volume).
navis.smooth_voxels() Smooth voxel(s) using a Gaussian filter.
navis.thin_voxels() Skeletonize image data to single voxel width.

Resampling#

Functions to down- or resample neurons.

Function Description
navis.resample_skeleton() Resample skeleton(s) to given resolution.
navis.resample_along_axis() Resample neuron such that nodes lie exactly on given 1d grid.
navis.downsample_neuron() Downsample neuron(s) by a given factor.
navis.simplify_mesh() Simplify meshes (TriMesh, MeshNeuron, Volume).

Comparing morphology#

NBLAST and related functions:

Module Description
navis.nblast NBLAST query against target neurons.
navis.nblast_smart Smart(er) NBLAST query against target neurons.
navis.nblast_allbyall All-by-all NBLAST of inputs neurons.
navis.nblast_align Run NBLAST on pairwise-aligned neurons.
navis.synblast Synapsed-based variant of NBLAST.
navis.persistence_distances Calculate morphological similarity using persistence diagrams.

Utilities for creating your own score matrices for NBLAST:#

Function Description
navis.nbl.smat.Lookup2d Convenience class inheriting from LookupNd for the common 2D float case.
navis.nbl.smat.Digitizer Class converting continuous values into discrete indices.
navis.nbl.smat.LookupDistDotBuilder Class for building a 2-dimensional score lookup for NBLAST.

Utilities for NBLAST#

Function Description
navis.nbl.make_clusters() Form flat clusters.
navis.nbl.update_scores() Update score matrix by running only new query->target pairs.
navis.nbl.compress_scores() Compress scores.
navis.nbl.extract_matches() Extract top matches from score matrix.
[navis.nbl.nblast_prime()][navis.nbl.nblast_prime] Error finding docstring for navis.nbl.nblast_prime: module 'navis.nbl' has no attribute 'nblast_prime'

Polarity metrics#

Function Description
navis.bending_flow() Calculate synapse "bending" flow.
navis.flow_centrality() Calculate flow between leaf nodes.
navis.synapse_flow_centrality() Calculate synapse flow centrality (SFC).
navis.arbor_segregation_index() Per arbor seggregation index (SI).
navis.segregation_index() Calculate segregation index (SI).

Distances#

Functions to calculate Euclidean and geodesic ("along-the-arbor") distances.

Function Description
navis.cable_overlap() Calculate the amount of cable of neuron A within distance of neuron B.
navis.distal_to() Check if nodes A are distal to nodes B.
navis.dist_between() Get the geodesic distance between nodes in nanometers.
navis.dist_to_root() Calculate distance to root for each node.
navis.geodesic_matrix() Generate geodesic ("along-the-arbor") distance matrix between nodes/vertices.
navis.segment_length() Get length of a linear segment.

Intersection#

Functions to intersect points and neurons with volumes. For example, if you'd like to know which part of a neuron is inside a certain brain region.

Function Description
navis.in_volume() Test if points/neurons are within a given volume.
navis.intersection_matrix() Compute intersection matrix between a set of neurons and volumes.

Transforming and Mirroring#

Functions to transform spatial data, e.g. move neurons from one brain space to another. Check out the tutorials for examples on how to use them.

High-level functions:

Function Description
navis.xform() Apply transform(s) to data.
navis.xform_brain() Transform 3D data between template brains.
navis.symmetrize_brain() Symmetrize 3D object (neuron, coordinates).
navis.mirror_brain() Mirror 3D object (neuron, coordinates) about given axis.
navis.transforms.mirror()
navis.align.align_rigid() Align neurons using a rigid registration.
navis.align.align_deform() Align neurons using a deformable registration.
navis.align.align_pca() Align neurons along their first principal components.
navis.align.align_pairwise() Run a pairwise alignment between given neurons.

NAVis supports several types of transforms:

Class Description
navis.transforms.AffineTransform Affine transformation of 3D spatial data.
navis.transforms.ElastixTransform Elastix transforms of 3D spatial data.
navis.transforms.CMTKtransform CMTK transforms of 3D spatial data.
navis.transforms.H5transform Hdf5 transform of 3D spatial data.
navis.transforms.TPStransform Thin Plate Spline transforms of 3D spatial data.
navis.transforms.AliasTransform Helper transform that simply passes points through.
navis.transforms.MovingLeastSquaresTransform Error finding docstring for navis.transforms.MovingLeastSquaresTransform: 'NoneType' object has no attribute 'split'

The TemplateRegistry keeps track of template brains, transforms and such:

Class Description
navis.transforms.templates.TemplateRegistry Tracks template brains, available transforms and produces bridging sequences.

The relevant instance of this class is navis.transforms.registry. So to register and use a new transform you would look something like this:

>>> transform = navis.transforms.AffineTransform(...)
>>> navis.transforms.registry.register_transform(transform,
...                                              source='brainA',
...                                              target='brainB')
>>> xf = navis.xform_brain(data, 'brainA', 'brainB')

You can check which transforms are registered like so:

>>> navis.transforms.registry.summary()  # this outputs a dataframe

These are the methods and properties of registry:

Method Description
TemplateRegistry.register_transform() Register a transform.
TemplateRegistry.register_transformfile() Parse and register a transform file.
TemplateRegistry.register_templatebrain() Register a template brain.
TemplateRegistry.register_path() Register path(s) to scan for transforms.
TemplateRegistry.scan_paths() Scan registered paths for transforms and add to registry.
TemplateRegistry.plot_bridging_graph() Draw bridging graph using networkX.
TemplateRegistry.find_mirror_reg() Search for a mirror transformation for given template.
TemplateRegistry.find_bridging_path() Find bridging path from source to target.
TemplateRegistry.shortest_bridging_seq() Find shortest bridging sequence to get from source to target.
TemplateRegistry.clear_caches() Clear caches of all cached functions.
TemplateRegistry.summary() Generate summary of available transforms.
TemplateRegistry.transforms() Registered transforms (bridging + mirror).
TemplateRegistry.mirrors() Registered mirror transforms.
TemplateRegistry.bridges() Registered bridging transforms.

Connectivity#

Collection of functions to work with graphs and adjacency matrices.

Function Description
navis.NeuronConnector Class which creates a connectivity graph from a set of neurons.

Connectivity metrics#

Functions to analyse/cluster neurons based on connectivity.

Function Description
navis.connectivity_similarity() Calculate connectivity similarity.
navis.connectivity_sparseness() Calculate sparseness.
navis.cable_overlap() Calculate the amount of cable of neuron A within distance of neuron B.
navis.synapse_similarity() Cluster neurons based on their synapse placement.

Import/Export#

Functions to import neurons.

Function Description
navis.read_swc() Create Neuron/List from SWC file.
navis.read_nrrd() Create Neuron/List from NRRD file.
navis.read_mesh() Load mesh file into Neuron/List.
navis.read_tiff() Create Neuron/List from TIFF file.
navis.read_nmx() Read NMX files into Neuron/Lists.
navis.read_nml() Read xml-based NML files into Neuron/Lists.
navis.read_rda() Read objects from nat R data (.rda) file.
navis.read_json() Load neuron from JSON (file or string).
navis.read_precomputed() Read skeletons and meshes from neuroglancer's precomputed format.
navis.read_parquet() Read parquet file into Neuron/List.
navis.scan_parquet() Scan parquet file.

Functions to export neurons.

Function Description
navis.write_swc() Write TreeNeuron(s) to SWC.
navis.write_nrrd() Write VoxelNeurons or Dotprops to NRRD file(s).
navis.write_mesh() Export meshes (MeshNeurons, Volumes, Trimeshes) to disk.
navis.write_json() Save neuron(s) to json-formatted file.
navis.write_precomputed() Export skeletons or meshes to neuroglancer's (legacy) precomputed format.
navis.write_parquet() Write TreeNeuron(s) or Dotprops to parquet file.

Utility#

Various utility functions.

Function Description
navis.health_check() Run a health check on TreeNeurons and flag potential issues.
navis.set_pbars() Set global progress bar behaviors.
navis.set_loggers() Set levels for all associated module loggers.
navis.set_default_connector_colors() Set/update default connector colors.
navis.config.remove_log_handlers() Remove all handlers from the navis logger.
navis.patch_cloudvolume() Monkey patch cloud-volume to return navis neurons.
navis.example_neurons() Load example neuron(s).
navis.example_volume() Load an example volume.

Conversion#

Functions to convert between data types.

Function Description
navis.neuron2nx() Turn Tree-, Mesh- or VoxelNeuron into an NetworkX graph.
navis.neuron2igraph() Turn Tree-, Mesh- or VoxelNeuron(s) into an iGraph graph.
navis.neuron2KDTree() Turn neuron into scipy KDTree.
navis.neuron2tangents() Turn skeleton(s) into points + tangent vectors.
navis.network2nx() Generate NetworkX graph from edge list or adjacency.
navis.network2igraph() Generate iGraph graph from edge list or adjacency.
navis.nx2neuron() Create TreeNeuron from NetworkX Graph.
navis.edges2neuron() Create TreeNeuron from edges and (optional) vertex coordinates.

Network Models#

NAVis comes with a simple network traversal model (used in Schlegel, Bates et al., 2021).

Not imported at top level! Must be imported explicitly:

from navis import models
Class Description
navis.models.TraversalModel Model for traversing a network starting with given seed nodes.
navis.models.BayesianTraversalModel Model for traversing a network starting with given seed nodes.

Interfaces#

Interfaces with various external tools/websites. These modules have to be imported explicitly as they are not imported at top level.

NEURON simulator#

Functions to facilitate creating models of neurons/networks. Please see the tutorials for examples.

Not imported at top level! Must be imported explicitly:

import navis.interfaces.neuron as nrn

Compartment models#

A single-neuron compartment model is represented by CompartmentModel:

Class Description
CompartmentModel Compartment model representing a single neuron in NEURON.
DrosophilaPN Compartment model of an olfactory projection neuron in Drosophila.

The DrosophilaPN class is a subclass of CompartmentModel with pre-defined properties from Tobin et al. (2017).

Method Description
CompartmentModel.add_current_record() Add current recording to model.
CompartmentModel.add_spike_detector() Add a spike detector at given node(s).
CompartmentModel.add_synaptic_current() Add synaptic current(s) (AlphaSynapse) to model.
CompartmentModel.add_synaptic_input() Add synaptic input to model.
CompartmentModel.add_voltage_record() Add voltage recording to model.
CompartmentModel.clear_records() Clear records.
CompartmentModel.clear_stimuli() Clear stimuli.
CompartmentModel.connect() Connect object to model.
CompartmentModel.get_node_section() Return section(s) for given node(s).
CompartmentModel.get_node_segment() Return segment(s) for given node(s).
CompartmentModel.inject_current_pulse() Add current injection (IClamp) stimulation to model.
CompartmentModel.plot_results() Plot results.
CompartmentModel.insert() Insert biophysical mechanism for model.
CompartmentModel.uninsert() Remove biophysical mechanism from model.
Attribute Description
CompartmentModel.Ra Axial resistance [Ohm * cm] of all sections.
CompartmentModel.cm Membran capacity [micro Farads / cm^2] of all sections.
CompartmentModel.label Name/label of the neuron.
CompartmentModel.n_records Number of records (across all types) active on this model.
CompartmentModel.n_sections Number of sections in this model.
CompartmentModel.n_stimuli Number of stimuli active on this model.
CompartmentModel.nodes Node table of the skeleton.
CompartmentModel.records Return mapping of node ID(s) to recordings.
CompartmentModel.sections List of sections making up this model.
CompartmentModel.stimuli Return mapping of node ID(s) to stimuli.
CompartmentModel.synapses Return mapping of node ID(s) to synapses.
CompartmentModel.t The global time. Should be the same for all neurons.

Network models#

A network of point-processes is represented by PointNetwork:

Class Description
PointNetwork A Network of Leaky-Integrate-and-Fire (LIF) point processes.
Methods Description
PointNetwork.add_background_noise() Add background noise to given neurons.
PointNetwork.add_neurons() Add neurons to network.
PointNetwork.add_stimulus() Add stimulus to given neurons.
PointNetwork.connect() Connect two neurons.
PointNetwork.from_edge_list() Generate network from edge list.
PointNetwork.get_spike_counts() Get matrix of spike counts.
PointNetwork.plot_raster() Raster plot of spike timings.
PointNetwork.plot_traces() Plot mean firing rate.
PointNetwork.run_simulation() Run the simulation.
PointNetwork.set_labels() Set labels for neurons.
Attributes Description
PointNetwork.edges Edges between nodes of the network.
PointNetwork.ids IDs of neurons in the network.
PointNetwork.labels Labels of neurons in the network.
PointNetwork.neurons Neurons in the network.

NeuroMorpho API#

Set of functions to grab data from NeuroMorpho which hosts thousands of neurons (see tutorials).

Not imported at top level! Must be imported explicitly:

from navis.interfaces import neuromorpho
Function Description
neuromorpho.get_neuron_info() Fetch neuron info by ID or by name.
neuromorpho.get_neuron() Fetch neuron by ID or by name.
neuromorpho.get_neuron_fields() List all available neuron fields.
neuromorpho.get_available_field_values() List all possible values for given neuron field.

neuPrint API#

NAVis wraps neuprint-python and adds a few navis-specific functions. You must have neuprint-python installed for this to work:

pip install neuprint-python -U

You can then import neuprint from NAVis like so:

from navis.interfaces import neuprint

These are the additional functions added by NAVis:

Function Description
neuprint.fetch_roi() Fetch given ROI.
neuprint.fetch_skeletons() Fetch neuron skeletons as navis.TreeNeurons.
neuprint.fetch_mesh_neuron() Fetch neuron meshes as navis.MeshNeuron.

Please also check out the tutorials for examples of how to fetch and work with data from neuPrint.

InsectBrain DB API#

Set of functions to grab data from InsectBrain which hosts some neurons and standard brains (see tutorials).

Not imported at top level! Must be imported explicitly:

from navis.interfaces import insectbrain_db
Function Description
insectbrain_db.authenticate() Authenticate against Insect Brain DB.
insectbrain_db.get_brain_meshes() Fetch brain meshes for given species.
[insectbrain_db.get_species_info()][navis.interfaces.insectbrain_db.get_species_info] Get all info for given species.
[insectbrain_db.get_available_species()][navis.interfaces.insectbrain_db.get_available_species] Get all info for given species.
insectbrain_db.get_skeletons() Fetch skeletons for given neuron(s).
insectbrain_db.get_skeletons_species() Fetch all skeletons for given species.
insectbrain_db.search_neurons() Search for neurons matching given parameters.

Blender API#

Functions to be run inside Blender 3D and import CATMAID data (see Examples). Please note that this requires Blender >2.8 as earlier versions are shipped with older Python versions not supported by NAVis. See the tutorials for an introduction of how to use NAVis in Blender.

Not imported at top level! Must be imported explicitly:

from navis.interfaces import blender

The interface is realised through a navis.interfaces.blender.Handler object. It is used to import objects and facilitate working with them programmatically once they are imported.

Class Description
blender.Handler Class that interfaces with scene in Blender.

Objects#

Method Description
blender.Handler.add() Add neuron(s) to scene.
blender.Handler.clear() Clear all neurons
blender.Handler.select() Select given neurons.
blender.Handler.hide() Hide all neuron-related objects.
blender.Handler.unhide() Unide all neuron-related objects.

Materials#

Properties Description
blender.Handler.color() Assign color to all neurons.
blender.Handler.colorize() Randomly colorize ALL neurons.
blender.Handler.emit() Change emit value.
blender.Handler.use_transparency() Change transparency (True/False).
blender.Handler.alpha() Change alpha (0-1).
blender.Handler.bevel() Change bevel of ALL neurons.

Selections#

You can use Handler.select() to select a group of neurons e.g. by type. That method then returns ObjectList which can be used to modify just the selected objects:

Methods Description
blender.Handler.select() Select given neurons.
blender.ObjectList.select() Select objects in 3D viewer
blender.ObjectList.color() Assign color to all objects in the list.
blender.ObjectList.colorize() Assign colors across the color spectrum.
blender.ObjectList.emit() Change emit value.
blender.ObjectList.use_transparency() Change transparency (True/False).
blender.ObjectList.alpha() Change alpha (0-1).
blender.ObjectList.bevel() Change bevel radius of objects.
blender.ObjectList.hide() Hide objects.
blender.ObjectList.unhide() Unhide objects.
blender.ObjectList.hide_others() Hide everything BUT these objects.
blender.ObjectList.delete() Delete neurons in the selection.

Cytoscape API#

Warning

The Cytoscape API is depcrecated and will be removed in a future version of NAVis.

Functions to use Cytoscape via the cyREST API.

Not imported at top level! Must be imported explicitly:

from navis.interfaces import cytoscape
Function Description
[cytoscape.generate_network()][navis.interfaces.cytoscape.generate_network] Error finding docstring for navis.interfaces.cytoscapecytoscape.generate_network: module 'navis.interfaces' has no attribute 'cytoscapecytoscape'
[cytoscape.get_client()][navis.interfaces.cytoscape.get_client] Error finding docstring for navis.interfaces.cytoscapecytoscape.get_client: module 'navis.interfaces' has no attribute 'cytoscapecytoscape'

Allen MICrONS datasets#

Functions to fetch neurons (including synapses) from the Allen Institute's MICrONS EM datasets.

Requires caveclient and cloud-volume as additional dependencies:

pip3 install caveclient cloud-volume -U

Please see caveclient's docs for details on how to retrieve and set credentials.

Not imported at top level! Must be imported explicitly:

from navis.interfaces import microns
Function Description
microns.get_cave_client() Get caveclient for given datastack.
microns.fetch_neurons() Fetch neuron meshes.
[microns.get_somas()][navis.interfaces.microns.get_somas] Error finding docstring for navis.interfaces.microns.get_somas: module 'navis.interfaces.microns' has no attribute 'get_somas'

Please also see the MICrONS tutorial.

H01 dataset#

Functions to fetch neurons (including synapses) from the H01 connectome dataset.

Requires caveclient and cloud-volume as additional dependencies:

pip3 install caveclient cloud-volume -U

Not imported at top level! Must be imported explicitly:

from navis.interfaces import h01
Function Description
h01.get_cave_client() Get caveclient for H01 dataset.
h01.fetch_neurons() Fetch neuron meshes.
[h01.get_somas()][navis.interfaces.h01.get_somas] Error finding docstring for navis.interfaces.h01.get_somas: module 'navis.interfaces.h01' has no attribute 'get_somas'

Please also see the H01 tutorial.

R interface#

Bundle of functions to use R natverse libraries.

Not imported at top level! Must be imported explicitly:

from navis.interfaces import r
Function Description
[r.data2py()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.data2py: module 'navis.interfaces' has no attribute 'r'
[r.get_neuropil()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.get_neuropil: module 'navis.interfaces' has no attribute 'r'
[r.init_rcatmaid()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.init_rcatmaid: module 'navis.interfaces' has no attribute 'r'
[r.load_rda()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.load_rda: module 'navis.interfaces' has no attribute 'r'
[r.nblast()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.nblast: module 'navis.interfaces' has no attribute 'r'
[r.nblast_allbyall()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.nblast_allbyall: module 'navis.interfaces' has no attribute 'r'
[r.NBLASTresults()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.NBLASTresults: module 'navis.interfaces' has no attribute 'r'
[r.neuron2py()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.neuron2py: module 'navis.interfaces' has no attribute 'r'
[r.neuron2r()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.neuron2r: module 'navis.interfaces' has no attribute 'r'
[r.xform_brain()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.xform_brain: module 'navis.interfaces' has no attribute 'r'
[r.mirror_brain()][navis.interfaces.r.data2py] Error finding docstring for navis.interfaces.r.mirror_brain: module 'navis.interfaces' has no attribute 'r'

Neuron types and functions#

As you can imagine not all functions will work on all neuron types. For example it is currently not possible to find the longest neurite via longest_neurite() for a VoxelNeuron. Conversely, some functionality like "smoothing" makes sense for multiple neuron types but the application is so vastly different between e.g. meshes and skeletons that there are specicialized functions for every neuron type.

Below table has an overview for which functions work with which neuron types:

TreeNeuron MeshNeuron VoxelNeuron Dotprops
navis.plot2d yes yes limited yes
navis.plot3d yes yes see backend yes
navis.plot1d yes no no no
navis.plot_flat yes no no no
navis.subset_neuron yes yes yes yes
navis.in_volume yes yes yes yes
smoothing navis.smooth_skeleton navis.smooth_mesh navis.smooth_voxels no
navis.downsample_neuron yes yes yes yes
resampling (e.g. navis.resample_skeleton) yes no no no
navis.make_dotprops yes yes yes yes
NBLAST (navis.nblast, etc.) no1 no1 no1 yes
navis.xform_brain yes yes yes (slow!) yes
navis.mirror_brain yes yes no yes
navis.skeletonize no yes no no
navis.mesh yes no yes no
navis.voxelize yes yes no yes
navis.drop_fluff yes yes no no
navis.break_fragments yes yes no no

  1. Use navis.make_dotprops to turn these neurons into navis.Dotprops